Summer Youth Program 2016 Human Hearing

Michigan Technological University

Dr. Andrew Barnard Miles Penhale

Agenda

- Human Hearing
 - Source Path Receiver
 - Sound waves
 - Ear
 - Anatomy and Function
 - Hearing loss (DEMO)
 - Causes, Prevention, Treatment
 - Hearing loss in the Military
 - Perception of sound
 - Everyone perceives sound differently Its Subjective!
 - Equal Loudness (DEMO)
 - Frequency Filtering (DEMO)
 - Perceived Relative Sound Level (DEMO)
 - Masking (DEMO)

The source-path-receiver paradigm is very important for noise control engineering measurements.

Sound is a pressure wave in air

Equation of pressure wave

- $y(t) = A * \sin(\omega t + \varphi)$
- A: amplitude of the pressure wave (Pa)
- ω : angular frequency (rad/s) = $2\pi f$ (Hz)
- φ : phase shift (rad). Represents how much time delay the waveform has with respect to time t = 0 sec.

Frequency, Sound Speed, & Wavelength

- Speed of Sound depends on Temperature of Air
 - $c = \sqrt{\gamma RT} = 20.05\sqrt{T}$
 - T in Kelvin: K = C + 273
 - At 20°C, c=343m/s or 1126 ft/s

Units are Important!

- Frequency units are $Hz\left(\frac{cycles}{s}\right)$
- Speed units are $\left(\frac{m}{s}\right)$
- Wavelength units are (m)

Sound Pressure Level

•
$$L_p = 20 * \log_{10} \left(\frac{p_{meas}}{p_{ref}} \right) dB$$

- $p_{ref} = 20 \ \mu Pa$
 - Quietest sound humans can hear

•
$$1 Pa = 1 \frac{N}{m^2} = 1 \frac{kg}{m * s^2}$$

Sound pressure amplitude is usually measured as a level in decibels to compress its large range of values

Human Ear Anatomy and Function

- 1. Sound wave in air
- 2. Tympanic Membrane- vibrates when sound wave interacts with it
- 3. Malleus, Incus, Stapes Small bones connect ear drum and cochlea
- 4. Cochlea fluid filled and lined with tiny hairs called cilia
- 5. Cilia move and vibrate creating an electrical nerve impulse
- 6. Electrical impulse travels to the brain to be interpreted

Basilar Membrane

- Inside of the Cochlea, about 23,000 tiny hair cells on the Basilar membrane act as voltage transducers for the auditory nerve endings
- Hearing loss can happen if cilia get permanently bent over

Healthy

Cochlear activity

Stapes

Source: 'Dangerous Decibels Program' OHSU — www.dangerousdecibels.org

Repeated exposures to loud noise can damage hair cells to the point that they won't recover.

Causes of hearing loss

- Listening to extremely loud noises
- Listening to moderately loud noises for extended periods of time
- "Natural" loss of hearing with Age (presbycusis)

Sources: dangerousdecibels.org; WSJ research

Several organizations work to protect workers from noise induced hearing damage

CHABA: National Research Council, Committee on Hearing, Bioacoustics, and Biomechanics

MIL Std. 1474D: All US military personnel and personnel occupied areas

Reference chart for hearing loss prevention

Allowable Exposure Time	OSHA (dB)	NIOSH & MIL (dB)
8 hrs	90	85
4 hrs	95	88
2 hrs	100	91
1 hr	105	94
30 min	110	97
15 min	115	100
7.5 min		103
195 sec		106
97 sec		109
49 sec		112
24 sec		115
Never Exceed	115	115

Note: These are levels at the ear, not in the surrounding environment. Hearing protectors can, and should, be used to extend exposure time in high level environments.

Hearing damage is present when the Minimum Audible Field (MAF) function increases due to aging or noise induced hearing loss

Definition of hearing handicap in the speech range

Table 2.2 Guideline for the relations between the average hearing threshold level for 500, 1000, and 2000 Hz and degree of handicap as defined by the Committee on Hearing of the American Academy of Ophthalmology and Otolaryngology

		Average hearing threshold level for 500, 1000, and 2000 Hz in the better ear		Ability to
Class	Degree of handicap	More than dB	Not more than dB	understand speech
Α	Not significant		25	No significant difficulty with faint speech
В	Slight handicap	25	40	Difficulty only with faint speech
С	Mild handicap	40	55	Frequent difficulty with normal speech
D	Marked handicap	55	70	Frequent difficulty with loud speech
Ε	Severe handicap	70	90	Can understand only shouted or amplified speech
F	Extreme handicap	90		Usually cannot understand amplified speech

Source: Davis, Trans. Am. Acad. Ophthalmol. Otolaryngol., 1965. With permission.

Threshold shifts over time "Filter" the sound that you should be hearing

Noise induced hearing loss is defined statistically

- Assumptions
 - Average hearing MAF at 20 yrs old (probably a bad assumption these days)
 - Sustained exposure over a 40 year working life
 - Statistical risk percentage

Figure 2.6 Percentage risk associated with hearing handicap under sustained occupational noise exposure.

Hearing Loss in the Military

- Extremely important problem!
 - Largest military expenditure for veteran disability care
 - Over \$1.1 Billion annually

Most prevalent disabilities of all compensation recipients							
Disability	Body system	Male	%	Female	%	Total	%Total
Tinnitus	Auditory	1,056,443	7.4%	47,149	2.8%	1,121,709	7.0%
Hearing loss	Auditory	823,134	5.8%	13,466	0.8%	854,855	5.3%
Post-traumatic stress disorder	Mental	600,193	4.2%	38,076	2.3%	648,992	4.0%
Lumbosacral or cervical strain ²⁰	Musculoskeletal	519,957	3.7%	92,082	5.4%	616,937	3.8%
Scars, general	Skin	503,411	3.5%	59,455	3.5%	574,191	3.6%
Limitation of flexion, knee	Musculoskeletal	390,144	2.7%	60,650	3.6%	453,704	2.8%
Diabetes mellitus	Endocrine	383,916	2.7%	4,665	0.3%	398,480	2.5%
Paralysis of the sciatic nerve	Neurological	322,212	2.3%	18,517	1.1%	346,572	2.2%
Limitation of motion of the ankle	Musculoskeletal	303,079	2.1%	38,359	2.3%	343,834	2.1%
Degenerative Arthritis of the Spine	Musculoskeletal	293,540	2.1%	39,597	2.3%	335,692	2.1%
Total most p Total nu	revalent disabilities mber of disabilities	5,196,029 14,179,086	37% 100%	412,016 1,691,759	24% 100%	5,694,966 16,105,400	35 % 100%

FY13 Veterans Affairs Annual Report

All GWOT compensation recipients and estimated annual payments

Total ¹⁴	714,380	\$ 9,134,739,468	\$ 12,787
Female	97,186	\$ 1,216,434,216	\$ 12,517
Male	614,348	\$ 7,889,012,940	\$ 12,841
Gender	Number of Veterans	Estimated total amount paid annually	Estimated average individual amount paid annually

http://backhome.news21.com/article/hearing/

http://usnews.nbcnews.com/ news/2012/11/13/14728839-hearing-loss-the-most-prevalent-injury-among-returning-veterans 1

Demonstration of hearing loss

HEARING LOSS

http://www.hse.gov.uk/noise/demonstration.htm

http://www.starkey.com/hearing-loss-simulator http://howihear.herokuapp.com/ http://shelaza.com/links/what-do-hearing-loss-hearingaids-and-cochlear-implants-sound-like/

Treatments for hearing loss

• Prevention

- Use hearing protection in loud environments: Ear plugs/muffs
- Turn music down when listening
- Routine hearing testing to track your
- Hearing Aids

• Cochlear Implants

Frequency (Hz) High Pitch

Right Ear

Frequency (Hz)

Left Ear

CANCEL OK

Sound Quality is the "opinion" of people about sound.

Objective

•Linear

Calibrated

As engineers we try to create <u>objective</u> measures of sound to describe <u>subjective</u> responses of people.

This is really hard because every person is different \rightarrow Statistics are you friend!

Conventional sound metrics, like SPL, have difficulties because human hearing can discriminate between different sounds of the same level.

88

Sound Quality has a subjective nature

Sound Quality depends on :

- environment
- Social Norms and Subjective Attitudes
- Race, Age and Sex
- Expectations and Experience
- Cultural background

The challenge in Sound Quality is to develop objective measures (metrics) for this subjective phenomenon

If our ear anatomy was exactly the same, we would still perceive sounds Differently due to our brains interpretation.

The Fletcher-Munson curves show equal perceived loudness levels of **pure tones** from large jury studies in the 1930s.

MAF = Minimum Audible Frequency Curve

Because our ear is non-linear, it responds differently to varied frequencies and levels.

A loudness unit of 40 Phons was defined as the loudness of 40 dB SPL at 1000 Hz

Now lets try an experiment to see if we can replicate the Fletcher-Munson curves! Cal Signal (1000 Hz) 63 Hz Equal loudness in phons 120 EQUAL LOUDNESS 110 125 Hz 100 100 90 250 Hz Intensity in decibels 80 80 70 500 Hz 60 60 50 2000 Hz 40 40 30 4000 Hz 20 20 8000 Hz 0 10,000 100 1000 Frequency (Hz) **Michigan Technological** University*

188

The MAF curve is minimized (maximum sensitivity) in the most important frequency ranges for communication.

Detection vs. Communication

- Low frequencies travel farther than high frequencies
 - Important to attenuate low frequency content to reduce detection distance for military applications
- Humans have difficulty hearing low frequencies
 - We communicate with frequencies between 200-2500 Hz therefore our ear are most adapt at perceiving these.

Human hearing is most sensitive at 1000 Hz

Now let's try to determine relative perceived sound levels

Description	Relative Level
Hardly Noticeable	<2 dB
Noticeable, but not significant	3 dB
Significant change	5 dB
Twice as loud	10 dB

PERCEIVED SOUND LEVEL

The frequency of the incoming sound excites a region of hair cells on the Basilar Membrane

Masking Demo

- Low frequencies can be used to "mask" other sounds
 - 500 Hz
 - 1000 Hz
 - 4000 Hz
 - White noise 200-700 Hz
- Bonus! Beat frequency between 1000 Hz and 1001 Hz

MASKING

